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Open up any book on airplane performance, and various equations are derived which allow for the
calculation of the climb rate, climb angle, required runway length, range, and other specifications for a given
airplane (with a given weight and at a given density altitude). Airplane design books give similar equations
that make it possible to determine (given some parameters such as airplane weight) how much wing area
would be needed in order for takeoff and landing to be possible at a certain runway, how much fuel would
be needed to carry a certain payload a certain distance, and how much engine power would be needed in
order to achieve a certain climb rate.

But what about aerobatics? What can a given airplane do? Not just “What is allowed by the POH and by the
placards, or lack thereof?”, but rather: What would be physically possible? And what characteristics — such as
stall speed, structural strength, roll rate, and maximum possible speed — are needed for certain maneuvers to
be “at least barely possible”? How would one calculate the “margins” regarding how close a given maneuver
would push a given airplane towards one of the edges of its V-G envelope?

There are few papers in the aeronautical engineering literature that concern themselves with determining
whether a given airplane is capable of aerobatics. Either an airplane is clearly capable of aerobatics (such as a
fighter or a Pitts), or it is “marginal” (such as an airliner or an LSA), and “marginal” airplanes are not certified
for aerobatics so the question is never investigated by professionals in the field.

However, laypeople often ask: Would an airliner be capable of a roll, a loop, of sustained inverted flight? The
famous Text Johnston 707 roll in 1956, and various action movie sequences, keep such questions in the
public consciousness.

| would like to address these questions, not just for jetliners but also for piston-powered trainers, for twin-
propeller airplanes, and generally for any airplane.

From a test-pilot’s point of view: What parameters would allow you to calculate, analytically, just how
safe/dangerous it is to take a given airplane and perform a loop, a roll, inverted flight, etc.?

What follows are some attempts at quantifying aerobatic capabilities, not so as to maximize them in tactical
or aerobatic-competition aircraft, but primarily so as to evaluate what “marginal” airplanes (such as airliners
and piston-powered trainers) can do, and what the relationships are between airplane characteristics (stall
speed, VNE, limit load, roll rate) and aerobatic capabilities.



Aileron rolls

As we all know, there are various kinds of rolls, from barrel rolls — whose “centrifugal” effect presses the pilot
against the seat the whole time — to slow rolls — whose sustained inverted segment has the pilot hanging from the
straps. The easiest roll is exactly in-between: the aileron roll, which happens during approximately zero-g flight.

Like a “Vomit Comet” parabola, the aileron roll starts with a pull-up into climbing fight, then a ballistic segment
during which the roll is performed until the nose is pointing below the horizon, followed by a pull-up returning to
horizontal flight.

Which airplanes are capable of aileron rolls?

This question can be broken down into: For how long can a given airplane fly a zero-g ballistic parabola? And: Is
that long enough, given the airplane’s roll rate, to perform a complete 360-degree roll?

1) Zero-g time

The time that can be spent in a zero-g ballistic trajectory depends, of course, on the vertical component of the
velocity at the end of the initial pull-up. Once at zero-g, gravity will decrease the vertical component of the
airplane’s velocity by 9.81 meters per second, per second. This will happen until the vertical component of velocity
reaches zero, at which point the airplane will reach the top of the parabola... and then it will continue for roughly
the same amount of time, until the airplane has a downwards angle and velocity that is roughly equal and
opposite to the upwards angle and velocity at the end of the pull-up / start of zero-g. (This is your basic

“projectile motion” problem from high-school physics).

Vertical component of
velocity (During zero-G
free-fall, decreases over
time due to gravity)

Horizontal component
of velocity (Constant)

What is the velocity of the airplane at the end of the pull-up and at the start of the zero-g phase?

A very simple initial model may be to imagine the airplane instantaneously converting all of its forwards velocity
into upwards velocity, going up (or at least diagonally) at the same speed (i.e. velocity magnitude) as it had when
traveling forwards. This would indeed maximize time at zero-g.

But is it realistic?

No, it is not realistic, for two reasons: (1) Due to critical limits in angle of attack (stall), structural strength (wings
braking off), and the human pilot (loss of consciousness), the airplane can only pull so-many Gs. This means the
pull-up will have some non-zero radius, causing a gain in altitude, causing some kinetic energy to be converted to



potential energy. Also, (2) Due to induced drag, the extra lift during the pull-up will increase the drag of the
airplane, causing it to lose speed. Therefore, the speed at the end of the pull-up will be lower than the speed at
the start.

[Specifically, one of the equations describing steady circular motion is A=VQ. Plugging in some numbers will reveal
that, for every 100mph of speed V, and for every G of acceleration A in addition to the 1g needed for level flight,
pitching up takes about 12° per second. In other words, the pitch-up points the nose upwards at roughly 12° per
second, per extra G of acceleration, for each 100mph. For example, if traveling at 500mph and performing a 1.8g
pitch-up to 30° (typical for the Vomit Comet), that pitch-up will take about 15 seconds. This is because 1.8g-
1g=0.8g, and 0.8 times 12°/s gives about 10°/s, and 30° divided by 10°/s is three seconds, but this is for every
100mph so at 500mph the 3 seconds become (3*500/100)=15 seconds].

In addition, the angle of the pull-up rarely exceeds 30° to 45°, in practice. Any steeper, and the airplane would
become severely slow at the top (as we will quantify when we model loops). This would cause a reduction in roll
rate (due to decreased aerodynamic forces on the ailerons), and it would require the airplane to change from
“pointing upwards” to “pointing downwards” relatively abruptly near the top.

Long story short, only about half of the airplane’s entry speed becomes vertical velocity.

9.8m/s is about 22 mph, which is the vertical speed taken away by gravity every second. If horizontal velocity
could be instantly turned into vertical velocity, then for every 110mph of speed, the airplane would get five
seconds going up, and five seconds coming down, i.e. ten seconds of free-fall. However, due to the “half” factor
we just discussed, as well as speed lost during the pull-up, in practice an airplane will only get 4 or 5 seconds of
zero-g time for every 100mph of entry speed.

2) Rolling

The question then becomes: Is that enough to roll 360°?

The answer is nearly always: Yes.

An RV-6 going at 150mph will have about 7 seconds to roll e =
all the way around. That is plenty of time.

A Cessna, LSA, Cub, or Citabria going at 100mph will have 4 or 5 seconds to roll 360°. Will that be enough? Just
barely. Typically, when performing aerobatics in under-powered single-engine trainers, the pilot starts out by
getting into a slight dive and picking up some extra speed at the start, because these airplanes’ VNE (never-exceed
speed, typically 15% below the speed at which flutter might occur) is significantly higher than speeds that can
achieved in level flight. Another option is to point the airplane up 45° or more. This risks an inverted spin at the
top of the maneuver when the speed is slow, and/or exceeding VNE during the steep descent near the end.

An airliner going at 500mph will have about 20 seconds of zero-g (as shown by the Vomit Comet) to roll all the way
around. As Tex Johnston showed us in 1956; That is plenty of time to roll a 707. Rebecca Wallick, when
interviewing Boeing’s test pilots for her book (including her father Lew), discovered that, in court, none of them
were willing to deny having rolled “their” prototype airliners (from the 727 to the 767). Plenty of pilots have rolled
B-1 bombers during the airshows at Edwards AFB over the years, and a roll is a standard part of the C-27 airshow
demo. Skilled airshow pilots have rolled old Beech 18s and new single-engine Cessna TTXs. Even the Vulcan
bomber was rolled once prior to its retirement, and at least one video exists of a V-22 being rolled.

In short, all but the most sluggish (low roll rate) airplanes can perform aileron rolls. When pulled up into a
ballistic parabola, an airplane can easily get about 5 seconds of zero-g time for every 100mph of
initial horizontal speed, and that time is enough for nearly all airplanes to roll 360°.



Loops

The main complication that comes from performing loops is the fact that they are very tall maneuvers. While
going up into a loop, the airplane primarily relies on inertia, with engine thrust barely helping (due to being largely
canceled out by drag). This means that the speed at the top of the loop becomes exceptionally slow; Most of the
airplane’s kinetic energy is converted to gravitational potential energy on the way up. The ability of an airplane to
go all the way around a loop without “falling off the top” relies on the airplane’s ability to pull Gs and, most
importantly, on the maximum speed that can be reached horizontally prior to the start of the loop. The faster an
airplane can go at the bottom, the more speed is “left over” at the top. You may have seen stunts where
motorcycles or skateboarders pick up speed and then go all the way around a loop-shaped ramp; Airplane loops
are governed by very similar principles.

Because this part of the paper will be quite long, it would be appropriate to start by summarizing the final results:
The more accurately we model the loop (e.g. teardrop-shaped rather than circular), the easier the G requirements
become. In the end, the required centripetal acceleration (pull-up force) is only about 2g, which most airplanes are
easily capable of. It is the speed performance, however, that will emerge as the key limitation. An airplane that
can pull 3g must enter the bottom of the loop with an airspeed that is at the very least about 1.7 times its stall
speed. An airplane that can only pull only 2 to 2.5g must enter the bottom of the loop while flying at twice its stall
speed, at the very minimum. Any slower, and the airplane’s speed will drop to zero around the time the nose is
pointed straight up, if not earlier. The only way to make it all the way around is to start with plenty of speed.

Especially if starting in a slight dive, most small propeller airplanes can easily and safely fly at 2 or 3 (sometimes 4
or 5) times their stall speed, and can pull 3 to 4g (even more if not fully loaded). This means that Cessnas and LSAs
are easily capable of performing loops. However, large transport jets such as airliners do struggle to fly at just
twice their [flaps-up] stall speed, and risk damaging the structure if more than 2.5g are pulled. So, as we will see,
their looping capabilities are extremely marginal. They can only perform a loop if flown very precisely, along the
very top of its V-G envelope: The pilot must pull just under 2.5g at high speed (bottom of the loop), then keep the
angle of attack just below the stall at slow speeds (upper part of the loop), or the airplane will run out of speed
before reaching the top.

Let’s do the math. There are a few increasingly accurate ways to model loops:

1) Circular loops, with no loss or gain in energy

2) Constant-G teardrop loops, with no loss or gain in energy

3) “Constant G above VA, critical alpha below VA” teardrop loops, with no loss or gain in energy

4) “Constant G above VA, critical alpha below VA” teardrop loops, with changes in speed causing changes in excess
thrust, thus also causing energy to be lost or gained.

We will mathematically model the first three, and leave the fourth as an exercise to the reader (with many hints).

1) Circular loop

The circular loop is a relatively straightforward high-school physics problem. (However, as we will soon see, it is
almost uselessly unrealistic for aeronautical applications). All that it requires is an understanding of kinetic energy,
gravitational potential energy, and circular motion.

The question we must answer is: What is the relationship between the entry speed, the loop radius, and the
centripetal acceleration? In order to have enough energy at the bottom to make it to the top, what speeds are
necessary and how many Gs are experienced while pulling up along the circular trajectory?



The two key equations here are

e mgH=¥%mV?Z which correlates how much kinetic energy is converted to potential energy
(i.e. how much speed is lost) when a body increases its altitude by H, and...

®  Acentripeta=V2/R, Which gives us the centripetal acceleration as a function of speed and radius.

A

%Vbnttnmz

%V.2 + gH

%V.2 + g(2R)

A= (Ve2/R)H1G

vy

The first equation can be simplified: Divide by /4m, solve for V, and you get \/(2gH)=V. When discussing the speed
at the top of the loop, the altitude gained is two loop radii: H=2R . Drop an object (or allow it to roll down a hill)
from an altitude of H to the ground (altitude zero), and it will hit the ground with a speed of \(2gH).

The second equation tells you how many Gs are associated with taking a circular turn of a given radius at a given
speed, be it in an airplane or a car or a satellite or any other object not going in a straight line. While pulling up in
an airplane, however, this calculation gets a little trickier when you take into account the effect of gravity. The
airplane needs 1g just to sustain level flight. At the beginning and end of the loop, the centripetal acceleration (the
acceleration pulling the airplane and pilot into the circular loop) is the total acceleration being felt by the airplane
and pilot, MINUS the one g for level flight. At the top of the loop, on the other hand, the situation is easier: The
centripetal acceleration pulling the airplane and pilot into the circular loop is the total acceleration being felt by
the airplane and pilot, PLUS one g. The airplane and pilot may be experiencing almost zero-g at the top of the
loop, but the airplane trajectory will still follow that circular arc for a moment, thanks to gravity. And finally, when
the airplane is pointed straight up or straight down, gravity pulls only straight back or straight ahead, having no
effect on the forces that keep the airplane turning into the circle.

Generalizing, Aztotal= Acentripetai+18*c0s0 , where 0 is the angle along the loop (zero at the bottom, 90° when going
straight up, 180° at the top, and 270° when coming straight down). The pilot and airplane experience Aztotal , and
the equation for circular motion (A=V?/R) is determined by Acentripetal - (Each “g” is an A of 9.81m/s?).

The effect of gravity on centripetal acceleration, and the fact that the airplane slows down as it goes uphill, lead us
to ask the following question. Given the airplane’s initial speed and the number of Gs it can pull: Will the airplane
have enough speed to make it to the top of the circle? Or will it run out of speed before getting to the top?

There are two ways to answer that question, each of which places a different requirement on the centripetal
acceleration.



1A) Rigid circular loops

The first way to approach
this physics problem is to
require that the speed
should simply not drop to
zero before reaching the
top. This is unrealistic for
aeronautical applications,
but it is simple and
therefore a suitable starting point. This model assumes that as
long as the airplane (or whatever object) has some speed, it will
keep moving along a circular path. This describes scenarios such
as a vehicle attached to a rail (e.g. the cars of an amusement park
ride with a circular loop), a weight at the end of one or more rigid
arms (like a circus “Russian swing” or an Estonian kiik swing), or
an object moving inside a pipe with a circular loop. One way to
characterize this set of situations is by their “worst case
scenario”: The object reaches zero speed right at the top of the
loop and gets stuck there until it is nudged one way or the other.

(Note: This may seem like an appropriate way to model a “pirate ship” amusement
park ride like the one pictured to the right. However, these rides have counterweights.
This means that the center of gravity is located just below the axle at the center of the
circle, and so the CG only moves up and down a short distance, while the passengers
move up and down a large distance. Moving the CG this short distance requires much
less kinetic energy, so the ride can be moving quite slowly — and not pulling a whole
lot of Gs — at the bottom and still easily make it over the top. We shall disregard this
trivial example and only model situations where the CG itself has to go up the entire
distance from the bottom of the loop to the top of the loop. No counterweights).

Assuming that the kinetic energy at the bottom is at least the potential energy at the top (i.e. mgH=%mV?) and
that the height H is twice the radius R, then the speed at the bottom is at least V(2g*2R)=V=V(4gR)

The centripetal acceleration at the top is at least zero (due to at least zero speed). So the
total acceleration at the top, Azwotal , Can be as low as minus 1g (i.e. hanging upside down at the top of the loop).

The centripetal acceleration at the bottom is at least A=V2/R=[\/(4gR)]2/R = 4g (required to turn into the circle).
The total acceleration at the bottom is that plus 1g*cos(0) = 5g = Aztotal -

It’s interesting how, no matter how tall a circular-loop pipe or a Russian swing or a circular roller-coaster loop is: If
the speed at the top is zero (e.g. if something is carefully balanced at the top of the loop and then is gently pushed
down one direction), the total acceleration at the bottom will be 5g. A taller loop will involve a higher speed at the
bottom but also a wider circle with less-intense centripetal acceleration “per speed”, and those will balance out
exactly, always giving a 5g peak total acceleration at the very bottom.

And because this is reversible (assuming that the friction is either zero or is canceled out by some kind of engine):
Entering a circular loop at the correct combination of speed and loop radius to generate an initially-5g acceleration
will result in the speed reaching zero at the very top.

This, of course, is the “bare minimum”: Pulling any more than 5g at the start of a rigid circular loop (by going
faster and/or turning into a tighter circle) will mean that some speed is still “left over” at the top.



1B) Non-rigid circular loops

The preceding discussion on rigid loops may be useful for circus acrobats on their Russian swings, and for
modeling many amusement park rides. However, no airplane can fly at zero airspeed at the top of the loop, and
very few airplanes can lose speed going up a circular loop and still pull off negative-one-g flight at the top. Most
loops — be it airplanes, swings, or a loop-shaped track with a stunt motorcycle or skateboarder or toy car in it —
must be performed without the total acceleration dropping below zero, i.e. with no less than 1g of centripetal
acceleration at the very top (so that the vehicle is “weightless” for just a moment at most at the very top).
Otherwise, the vehicle “falls off” the top of the loop.

So instead of the speed at the top needing to be at least zero, for a non-rigid loop, the speed at the top needs to
be at least the speed that requires 1g of centripetal acceleration to pull the vehicle into the loop’s circular arc.

This means that at the top, Acentripetal= V2/R 2 1g , 50 Viop Needs to be at least V(gR).

At the bottom ,  ¥%MVpotom? = ¥:MViop? + MgH i.e.  ¥Vboom? = %[V(gR)]? + g(2R)

Viotom = V { [V(gR)]? + 2g(2R) } = V { gR + 4gR } = V{5gR} (Recall that for the rigid-arm loop, it was V{4gR} ).
As for the acceleration: Aztotai@bottom = Vbotom*/R + 18 =5g + 1g = 6g .

This means that, in order to fly (or drive, or swing) a truly circular loop without the Gs going negative at the top,
you need to pull at least 6g at the bottom.

(Similarly, in order to get a chain swing or a stunt skateboarder or motorcycle or car to do a 360° loop, it must be
going fast enough at the bottom that the combination of radius [e.g. the chain length] and speed should make for
Aziora = V?/R + 1g 2 68 ).

This model, although more useful, neglects two factors, causing it to be very conservative (i.e. In reality, airplanes
need much less than 6g to do a loop) The first factor: As the airplane slows down on its way up the loop, the speed
will become less than the terminal speed at that engine setting, which means the airplane will have “excess
thrust” for that speed, and so it will not lose speed quite so fast. This is one reason why these 5g and 6g numbers
are conservative: In a powered airplane, the speed (and thus the centripetal acceleration) at the top will be slightly
higher than these numbers (thanks to engine thrust on the way up), so it’s not necessary to pull 6g at the bottom.

The other factor being neglected is the fact that...



2) Constant-G teardrop loops

... as speed decreases on the way up the loop, the radius of turn can decrease without
the Gs increasing. In a circular loop, you have to pull many Gs at the very bottom but
then the Gs die down until they are zero at the top. But by keeping the Gs high by
tightening the radius as you go up the loop, the loop becomes much less tall, requiring
much less energy (and thus less speed and Gs) to get all the way around. The loop will
then no longer be a circle. Rather, it will be a teardrop shape. Notice how nearly every
roller-coaster loop has a teardrop shape, and most loops flown by aerobatic airplanes
at airshows have a teardrop shape. Near the top, slower
speeds are combined with tighter turn radii in order to keep
the Gs roughly constant all the way around. Even at the top
of the loop, the pilot is pressed firmly “down” into the seat.

As we saw, Aztotal= Acentripetal+1g*cose where Acentripeta|=V2/R

So now say that, instead of R being constant and Aztotal
changing as you go around the loop (from 5g or 6g at the
bottom, to Og or -1g at the top), let’s hold Aztal cOnstant (i.e.
pulling up as hard as you can, the whole way around) and ask:
How does the radius change as you go around the loop?

Solve  Azota= V/R + 1g*cos0 for R and you get R=[A-gcosO]/[V?]

The speed changes as a function of height, just like before, as xmV? changes into mgH. So the decrease in V?
matches the increase in 2gH. So the square of the speed at any height is Vpottom>-2gH. In other words,

R=[A-gcosO]/ [Vbottom>-2gH ]

This is a function of the nose-up angle 6 (zero at the bottom, 90° when going straight up, 180° at the top, etc.) and
of the height H at each point along the loop.

But the change in angle pertime, Q, is A/V  i.e. A/[Vbottom?-2gH ]...

And the change in H per time, the vertical component of V, is  [Vbottom?-2gH 1sin0 ...

So if you try to set up these equations and solve them analytically, you get some really ugly differential equations
that require the use of vector calculus and differential geometry. It is doable, if you really like math. Look up

clothoids, cornu spirals, Euler spirals, and so on:

http://physics.gu.se/LISEBERG/eng/loop pe.html http://datagenetics.com/blog/march42014/index.html

Personally, instead of actually doing the math (and in order to keep the physics and math here at a high-school
level), | would prefer to solve these equations using numerical analysis, i.e. an explicit iterative method using
single linear steps, maybe with multiple stages to increase accuracy (which is the nice way of saying “Brute force
computation instead of exact equations”). And | will, in a minute. But before | do, | would like to acknowledge one
more imperfection of this mathematical model.



3) “Constant G above VA, critical alpha below VA” teardrop loops

The final tweak we will make to our loop math is the fact that it is not always possible to pull as many Gs as you
want. The airplane slows down on its way up the loop. Once it slows down below the maneuver speed, VA, pulling
“limit load” (the maximum number of Gs that the wing structure can safely take) would cause the airplane to stall.
So instead of pretending that the airplane can pull maximum Gs all the way around the loop, we should find the
height at which the speed will drop below VA, and when below that speed (i.e. when above that height) we should
only pull as many Gs as possible without stalling.

Let’s pretend that, once we reach VA, we want to maintain a certain angle of attack (such as, for example, the
angle that gives CLmax for your wing’s airfoil at applicable Reynolds numbers). Let’s say that, at the stall speed,
flying at that angle of attack provides 1g worth of lift. As you fly faster and hold that angle of attack, more lift is
generated because the dynamic pressure goes up, and the dynamic pressure is proportional to the square of the
speed: Fly at 1.1 times your stall speed, and you can pull 1.21g before you stall. Fly at 1.2 times your stall speed,
and you can pull 1.44g before you stall. Fly at 3 times your stall speed, and you can pull 9g before you stall (wing
structure permitting).

So, at speeds below VA, the maximum number of Gs that can be pulled is 1g times the square of the ratio between
the speed and the stall speed. (VA is the speed at which this quantity, the maximum number of Gs that are
aerodynamically possible, exceeds the structural limit load).
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0Ok, so let’s do a numerical analysis.

Our airplane can be safely flown at some maximum speed (say, VNE, which is typically set at about 85% of the
flutter speed), and can safely pull some number of Gs (say, the limit load, which is either the load where the
structure starts yielding, or 2/3 of the load where the structure experiences catastrophic failure, whichever is
lower), and has some stall speed (at which the wings can only generate 1g worth of lift when at the angle of attack
that generates the most lift). Those are the inputs. The question is: Can the airplane do a loop?

Let’s model the airplane’s loop as a series of linear (straight-line diagonal) increments. We'll split it into 10°
increments of 0, so we will need about 36 of those increments.

The first increment will start with the airplane going horizontally and pulling to 10°. Our linear model will treat this
segment as a small 5-degree slope. The next increment starts when the airplane is at 10° nose-up and goes to 20°,



i.e. we will treat it as going uphill by a 15° 20°
slope. The following increment after that will
start when the airplane is at 20° nose-up and
goes to 30°. And so on, 360° around.

The speed at the start of each increment is the
speed at the end of the previous increment
(which we will calculate in a minute).

Segment 2 :

If above VA, the total Gs being pulled are the
limit load.

. Segment 1
If below VA, the total Gs being pulled are the
max aerodynamically possible Gs, which is the
square of the ratio between the current speed and the stall speed.

The centripetal acceleration are the total Gs being pulled, minus one times the cosine of the angle. (For example:
While flying horizontally, the centripetal A is the total A being experienced by the airplane and pilot, minus the 1g
needed for level flight. At the top of the loop, the centripetal A is the total A being experienced by the airplane
and pilot, plus the 1g from gravity helping the airplane follow the arc of the loop even if the pilot feels weightless.
And so on).

If we know the speed and the centripetal acceleration, we can get the local radius, R. R=V?/Acentripetal -

If we know the local radius, then we can know the length of that (27R)5°/360°
ten-degree segment. It will be 1/36% of the circumference, where %

“the circumference” is 27 times the radius. But what we really

want, in order to calculate the location of the endpoint of the
increment, is the length of the straight-line segment that cuts
across the circular arc of the loop. The length of that segment is
twice R times the sine of half the increment angle, i.e.
2*R*sin(10°/2), as shown in the diagram to the right (for only half
the segment).

\

M R:sin(5°) [because = blue side +R ]

Once we know the length of that segment, and the angle off the horizontal (which is just 6 at the midpoint, i.e. 5°
for the 0°-to-10° segment, then 15° for the 10°-to-20°segment...), then we can calculate the coordinates of the
start of the next segment. The x coordinate doesn’t matter much, other than for plotting the shape of the loop
later. But the y coordinate is crucially important: It tells us the change in height H during that segment.

Given the change in H, we can calculate how much kinetic energy mV? became potential energy mgH, so we can
calculate the speed at the end of this 10° segment, which will be the speed at the start of the next 10° segment. In
other words, if the airplane goes up a small diagonal hill of a certain length and height, starting at a certain speed,
we know how much speed it will lose by going up that small hill.

This looks like the following. Take an RV-3/4/6, which have a VNE around 200mph, and a limit load of 6g. To stay

well away from these dangerous limits, can the airplane perform a loop pulling only 3g and going only at 160mph
at the bottom? Let’s try it...
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J16=I16*CO5((3C16+0. 5*$DF12)*IHT9)
K16=I16*SIN({($C16+0.5%$D$12)*FHE9)
L16=(1/$H$8) *SQRT( (($H$8*§DIL0IA2) -2*$H$10* (EL6+K1E)) .
5 ol 4
B C D E F G H I J K L
Input parameters Constants and Conversions
Limit Load (G) 3 m/s in an mph 0.44704
Stall speed (mph) 65 radians in a degree | 0.017453293
Speed at bottom (e.g. VNE)| 160 one G in m/s* 9.81
Maneuver speed 112.5833
Increment size (degrees) 10
seament | Soriarals | Mo M| Soepeed | op | Lol | e | momanein) | commt oy |V
1] 1] 1] o 160 3 260.2604674 | 45.36639 | 45.19375589 3.953941302 | 158.7822945
1 10 45.19376| 3.95394 | 158.782295 3 250.5671339 | 43.67673 | 4218848087 11.30436938 | 155.2481787
2 20 87.38224| 15.2583 | 155.248179 3 229.2032901 | 39.95277| 36.20950292 16.88476851 | 149.8142667
3 30 123.5917| 32.1431 | 149.814267 3 202.1193249 | 35.23172| 28.86013527 20.20808427 | 143.0397201
4 40 152.4519| 52.3512 | 143.03972 3 173.2754477 | 30.2039 21.357383 21.357383 135.5122678
5 50 173.8093| 73.7085 | 135.512268 3 145.7299381 | 25.4024 | 14.57021921 | 20.80842952 | 127.7524251
5 60 188.3795| 94.517 | 127.752425 3 121.28158 21.14077 | 8.934476471 | 19.16004662 | 120.16459761
7 70 197.314 | 113.677 | 120.164976 3 100.6415847 | 17.54298 | 4.5404584 16.94522144 | 113.0309868
8 80 201.8544| 130.622 | 113.030987 3 83.80097324 | 14.60747 | 1.273125083 | 14.55188629 | 106.5239646
9 90 203.1275| 145.174 | 106.523965 | 2.6858 | 78.34991879 |13.65729( -1.190311318 | 13.60532062 | 100.0581646
10 100 201,9372| 158.779 | 100.058165 | 2.3696 | 72.66136583 |12.66571( -3.278127127 | 12.23413699 93.86445107
11 110 198.6591| 171.014 | 93.8644511 | 2.0853 | 66.92158004 11.6652 | -4.929926559 | 10.57226162 88.1622973
12 120 193.7292| 181.586 | 88.1622973 | 1.8397| 61.43771289 10.7093 | -6.142601555 | 8.772544168 | 83.13444282
13 130 187.5866| 190.358 | 83.1344428 | 1.6358 | 56.51404057 |9.851046  -6.965741686 | 6.965741686 | 78.91429217
14 140 180.6208| 197.324 | 78.9142922 | 1.474 | 52.40458798 |(9.134722( -7.482725854 | 5.239461049 75.58488681
15 150 173.1381| 202.564 | 75.5848868 | 1.3522 | 49.28637518 | B.591181 ( -7.786254487 | 3.630790095 73.18891943
16 160 165.3518| 206.194 | 73.1889194 | 1.2678 | 47.26525829 | B.238877 | -7.958144446 | 2.132378377 | 71.74447096
17 170 157.3937| 208.327 | 71.744471 |1.2183| 46.40237143 | 8.088466 | -8.057687238 | 0.704956288 | 71.26050225
18 180 149.336 | 209.032 | 71.2605023 |1.2019| 46.74326997 | 8.147889 | -8.116883648 | -0.710135302 | 71.74801439
19 150 141.2191| 208.322 | 71.7480144 | 1,2184 | 48.33595249 | B.425512( -8.138419333 | -2.180682888 | 73.22478226
20 200 133.0807| 206.141 | 73.2247823 |1.2691| 51.22922577 |8.929842 | -B.093185745 | -3.773914492 | 75.71246485
21 210 124,9875| 202.367 | 75.7124649 |1.3568 | 55.44568063 | 9.66481%9 | -7.916956205 | -53.5343512414 | 79.22511179
22 220 117.0706| 196.823 | 79.2251118 |1.4856| 60.9278838 |10.62043 | -7.509778025 | -7.509773025 | 83.74902885
23 230 109.5608 | 189,314 | 83.7490289 |1.6601 | 67.47026383 |11.76084 | -6.745741794 | -9.633917698 | 89.21727018
24 240 102.8151| 179.68 | 89.2172702 | 1.884 | 74.67454835 |13.01663 | -5.501066157 | -11.79707444 | 95.48776509
25 250 97.31399| 167.883 | 95.4877651 | 2.1581 | 81.98241452 |14.29048 | -3.698647471 | -13.80354028 | 102.3381281
26 260 93.61534| 154.079 | 102.338128 | 2.4788 | 88.80515097 |15.47976| -1.349149787 | -15.42085263 | 109.4854019
27 270 92.26619| 138.658 | 109.485402 | 2,8372 | 94.68888898 |16.50536( 1.438536988 | -16.44255302 | 116.6247001
28 280 93.70473| 122.216 | 116.6247 3 107.3628807 | 18.71458 | 4.843690559 -18.07689926 | 124.0001694
29 250 98.54842| 104.139 | 124.000169 3 128.8678345 | 22.46314 | 9.493334731 | -20.35852203 | 131.8133696
30 300 108.0418| 83.7803 | 131.81337 3 154.6481236 | 26.95694 | 15.46186796 | -22.08183591 | 139.7951187
31 310 123.5036| 61.6985 | 139.795119 3 183.6847475 | 32.01836 | 22.64040033 -22.64040033 | 147.5310943
32 320 146.144 | 39.0581 | 147.531054 3 214,1138975 | 37.32251| 30.57281162 | -21.40731316 154489846
33 330 176.7168| 17.6508 | 154489846 3 242.8040247 | 42.32353 | 38.35814502 | -17.88669678 | 160.0723602
34 340 215.075 |-0.23591| 160.07236 3 265.6471303 | 46.30535| 44.7275295 -11.98470541 | 163.7063633
35 350 259.8025|-12.2206| 163.706363 3 278.539539 48.55264 | 48.36788336 | -4.231641473 | 164.9703606
36 360 308.1704|-16.4523 | 164.970361 3 278.8054631 | 48.59899 | 48.41406059 | 4.235681457 | 163.7051519
37 370 356.5844|-12.2166| 163.705152 3 266.3291403 | 46.42423 | 44.84236087 | 12.01547438 | 160.0616852
38 330 401.4268| -0.2011 | 160.061685 3 243.6369805 |42.46872 | 38.48973526 | 17.94805831 | 154.4592854
39 330 439.9165| 17.747 | 154.459285 3 214.8471078 | 37.45032 | 30.67750497 | 21.48062023 | 147.4746931
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Apparently, despite being symmetric, the loop 300 Increment |  Final
somehow ended up at a different height than where it = Size Height
started! | will not dive into the details, but this kind of 3 ign 'ls":; m
.. . . . . ¢ -7.67 m
error is inherent in numerical analysis. It builds up ’ o 229m
with each iteration, and is very hard to get rid of. 2° 176m
1° -0.88 m
There are two things we will do to reduce the error. 0.5° 044m
0 50 100 150 200 250 300 350 400 0.25° -0.22 m
% 0.1° -0.089 m

One is the brute-force approach. For this particular set
of inputs, this table shows the size of the final error as a function of how many degrees of looping are in each
linear increment. As you can see, we really should use smaller increments. And why not? It just means copying and
pasting more Excel rows.

The second way to reduce error: We know the speed at the start of each segment, and the speed at the end of
each segment. However, the radius — and thus the segment length and its height — were calculated using the start
speed only. So the whole segment was “too fast”, with too high a speed and too wide a radius. So let’s take our
start speed and our “first iteration” end speed, take their average, and use this “average first-iteration” segment
speed to come up with a “second iteration” radius, segment length, change in y (and also x) coordinate, and end

speed. This second stage will tremendously improve alx

accuracy, while only requiring less than twice the Fie Edt Format View Help
computational power. o bietfosiz -
Dl 15+015

E16=E15+P15
F16= (l{gH$8%*EQRTg(gSH§?*$D§}2}nz% 2;‘$H$10*E16)
P o G16=IF (F16>3D%11,3D3%8, ((Fl6
Implement this, and we get the following: FL6-CCSHS8~(F16-0. 5* (F15-F169)) /29, (SHS10* (616-COS((CLE+0. S*5DS12)*$H39)))
T16=2*H16*SIN($D$12*$H$9,2)
J16=T16%C0o5(($C16+0. 5%$D312)*$H39)

A B C D E F G H I K16=T16*5IN{($C16+0.5%$D312)*$H39)
c 1/$H38)*5QRT((($HE8*IDS10)A2) -2*SHIL10* (EL6+K16) )
° ($H$B*AVERAGE (F16,L16))42) /(SH$10*(G16-COS{(C16+0.5%5D%12)*$H$9)))
7 Input parameters Constants and Conversions N]_G—Z*M]_G*SIN($D$12*$H$9/ J
- . —N16* w

8 Limit Lead (G) 3 n_wfs |rT an mgh 0.44704 gig=:igxggﬁggggig:g ;«%g%i%%*%:%g%
9 Stall speed (mph) 65 radians in a degree| 0.017453293 | =
10 Speed at bottom [e.g. VNE)| 160 one G in m/s’ 9.81 4 | | » d
11 Maneuver speed 112.583
12 Increment size [degrees) 2
13

S Start angle Hatstart | Hatstart | Start speed Gs Local Radius Segment Horizontal Wertical Istiteration | 2nditeration [ 2nditeration 2nd iteration 2nditeration
14 [degrees) (m] [m] [mphl [m] Length (m]| Component(m) | Component(m) | Y atend (mis] | Local Radius | Segment Length | Horizontal Component | Wertical Component
15 o o 0 o 160 3 260.7357966 | 9.100934 | 5.099548073 | 0.158833202 | 159.9512624( 260.65638 | 9.098162168 9.096776473 0.158784824
16 1 2 9.09678 [ 0.15878 | 159.951277 3 260.3391003 | 9.087088 | 9.074634042 | 0475581418 | 159.8052575| 260.180738 | 9.0B1559976 9.065114014 0.475292126
17 2 4 18.1659 | 0.63408 | 159.805346 3 259.3905622 |9.053979 | 9.019525912 | 0.789106268 | 159.5627691( 259.233641 | 9.048501736 9.014069455 0.78862889
18 3 6 27.18 | 142271 | 159.562916 3 2579776179 | 9.00466 | 8937541105 1.09739206 159.2245552| 257.823072 B.8992661 8.9321B6935 1.096734651
19 4 B 36.1121 [ 251844 | 158.225158 3 256.1121332 | 8.939546 | B.B20485438 1.38845311 158.7934384| 255.960855 | B.934265851 B.824270252 1.397627105
20 5 10 449364 | 3.91707 | 158.793654 3 253.8095947 | 8.859176 | B.606408385 1.69041055 158.2702723| 253.662435 | B.854039828 B.691366178 1.689430445
21 & 12 53.6278 | 5.6065 | 158.270576 3 2510888342 | 8.764209 | B.5395B267 1971518004 | 157.6579181| 250.946567 | B.759242972 8.534744142 1.970400942
22 7 14 62.1625 | 7.5769 | 157.658266 3 2479717015 | 8.655406 | B.360480038 | 2.240183875 | 156.9592179| 247.83503 | B.650635347 B8.355872095 2.23894918
3 B 16 705184 | 9.B1585 | 156.955604 3 244 483683 | 8.533623 | 8160743526 | 2404080802 | 156.1773628[ 244.352236 | B.520065063 B8.156389309 2.493658462
24 g 18 78.6748 | 12.3095 | 156.1777E1 3 2406485481 |8.399793 | 7942159876 | 2734704955 | 155.3158602( 240.524834 | B.395474308 7.93807691 2.733299076
25 10 20 86.6129 | 15.0428 | 155.316305 3 2364978242 |8.254912 | 7706624544 | 2958295994 | 154.3784965( 236.381287 | 8.250844585 7.702827007 2.956838256
26 11 22 94 3157 [ 17.8996 | 154.37836 3 232.060461 |8.100027| 7456114136 | 3.164932678 | 153.3693001| 231.95143% | B.086221583 7.452611262 3.163445796
7 12 24 101.768 | 21.1631 | 153.369776 3 227.367345 |7.936215| 7.19265312 3.353989233 | 152.2925023| 227.266082 | 7.932680051 7.189449703 3.352485454
] 13 26 108.958 | 24.5156 | 152.292984 3 222 4498839 |7.764572 | 6918283929 | 3.525041729 | 151.1524982( 222356529 | 7.76131302 6.915380537 3.523562377
29 14 28 115.873 [ 28.0381 | 151.152579 3 217.3396003 | 7.586198 | 6.635038341 | 3.677B61809 | 149.953B077| 217.254213 | 7.5B3217668 6.632431616 3.676416878
30 15 30 122.506 | 31.7156 | 149.954281 3 2120677514 |7.402185| 6.34491109 3.812407205 | 148.7010377| 211.990311 | 7.399482121 6.342594116 3.811015027
31 16 32 128.848 [ 35.5266 | 148.701457 3 2066649828 | 7.213603 | 6.049836148 | 3928809532 | 147.398B456| 206.585389 | 7.211173379 6.047798B73 3.92748651
32 17 34 134.856 | 39.454]1 | 147.395286 3 201161018 |7.021488 | 5751665995 | 4.027355887 | 146.0515041201.089103 | 7.019326545 5.749895689 4.026120305
33 18 36 140.646 | 43.4802 | 146.052321 3 1955843904 | 6.826837| 5452154089 | 4.108492796 | 144 664B6E4| 195529926 | 6.824935468 5.450635818 4.107348697
34 18 38 146.096 | 47.5875 | 144665257 3 189.9622169 | 6.630596| 5.15294062 4172765038 | 143.2423466| 189.914923 | 6.628944856 5.151657724 4171730169
35 20 40 151.248 | 51.7583 | 143.242703 3 184 3200145 | 6.433656 | 4855541529 | 4220857856 | 1417888714| 184279565 | 6432243888 4 854476085 4219531679
36 21 41 156.103 [ 55.8792 | 141789182 3 178.6815593 | 6.236846 | 45613406096 | 4.253515012 | 140.308B758| 178.647607 | 6.235661281 4.56047396 4.252710767
37 22 44 160.663 | 60.2319 | 140.30915% 3 173.0687862 | 6.040934 | 4271585112 | 4.271585112 | 138.8066712( 173.040944 | 6.039961771 4.270857926 4.270897926
38 23 46 164.934 | 64.5028 | 138.806914 3 167.5017259 | 5.846616 | 3.987382796 | 4.275944546 | 137.2B64284( 167.479595 | 5.845843907 3.0B6855958 4.27537958
39 24 48 168.921 | 6B.7782 | 137.28663 3 1619984771 | 5654527 | 3709703183 | 4267525342 | 135.7521619( 161981646 | 5.653939052 3.708317764 4267081968
40 25 50 17263 | 73.0453 | 135.752322 3 1565752082 | 5.465228 | 3.438379661 | 4.24718B0164 | 1342077164 156.563265 | 5.464811463 3.430117287 4.246556158
41 26 52 176.069 | 77.2922 | 134.207835 3 1512461931 | 5.27922 | 3.177113948 | 4.216172612 | 132.6567568( 151.238723 | 5.278859315 3.176957022 4.215964365
42 27 54 179.246 | B1.5082 | 132.656834 3 146.0238536 | 5.096935 | 2923481978 | 4.175164959 | 131.1027602 146.020451 | 5.096816535 2.923413B65 4.175067684
43 28 56 182.17 | B5.6833 | 131.102797 3 1409188423 | 4918746 | 2678940978 | 4125207351 | 129.5450104 140919114 | 4918755285 2678946137 4125215297
44 29 58 184.849 | B9.BOB5 | 128.545007 3 135.940135 | 4744065 | 2443837446 | 4.06722B851% | 1279085047 13504360 | 4.745085047 2443501528 4.06733517
45 30 60 187.293 [ 93.8758 | 127.998554 3 1310950809 |4.575849 | 2218415745 | 4.002127945 | 126.4544031[ 131.101576 | 4.576075961 2.218525649 4.002326217
46 31 62 189.511 [ 97.8781 | 126.454326 3 126.3896102 |4.411606| 2002827074 | 3.930769456 | 1249191281 126.398691 | 4.411922655 2.002970971 3.93105187
47 32 54 191.514 | 101.809 | 124915017 3 1218282471 |4.352392| 1797138587 | 3.853976136 | 123.3952677| 121839591 | 4252788112 1.79730592 3.854334883
48 33 66 193.311 | 105.664 | 123.395135 3 117.4142745 |4.098323 | 1601342486 | 3.772526484 | 1218B51284| 117.4275E | 4.0598787652 1.60152394 3.772553864
49 34 68 194.913 | 109.436 | 121.BB4956 3 113.1498422 |3.949474| 1415364923 | 3.687151684 | 120.3908303[ 113.164828 | 3.949997161 1415552383 3.687640034
50 35 70 196.328 | 113.124 | 120.390631 3 109.0360768 | 3.805884 | 1239074584 | 3.598533884 | 118.9143123 109.052487 | 3.806456663 1.239261071 3.599075482
51 36 72 197.568 | 116.723 | 118.914089 3 105.0731975 | 3.66756 | 1072290856 | 3.507305354 | 117.4573354 105.080797 | 3.668174585 1.072470458 3.507892811
52 37 74 198.64 | 120.231 | 117.457084 3 1012606202 |3.534483 | 0914791515 | 3.414048411 | 116.0215082( 101.279194 | 3.535131317 0.514959312 3.414574638
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Here, we did the analysis using an entry speed of 160 mph, a stall speed 4

of 65 mph, and the willingness to pull 3g. This leaves lots of margin, in G
an aerobatic airplane. What happens as we change the numbers? 6T
Say we’re ok with pulling 6g (because, for example, the airplane is being 34

flown well under the max gross weight) and going to 215mph (a hair
under the VNE for the RV-7/8/14). This means we go from flying in the
“green” region to flying in the “red” region, as shown in the V-G
envelope to the right. The result? The loop goes from “more Vv
teardropped” to “more circular”:

Flying an aerobatic RV with lots of margin Flying an aerobatic RV at the edge of its V-G envelope

Interestingly, increasing the number of Gs (e.g. Say we’re am Extra 300, or a Zivko Edge 540, and can pull 10g) only
makes the loop slightly more circular, because fairly early on its way up the loop, the airplane’s speed drops below
the speed that would be needed to pull that many Gs (e.g. The speed needs to be three times the stall speed in
order for the airplane to be aerodynamically capable of pulling 9g). So even if an airplane is structurally certified to
safely pull 10g, during most of a loop, it is going too slowly to be aerodynamically able to do so without stalling.

What has the greatest effect in loop “roundness” is increasing 2000
the ratio between entry speed and stall speed. The greater
this ratio, the smaller a fraction of the airplane’s speed is lost
on its way up the loop, so the smaller the change in loop
radius between the top and bottom, so the more circular the
loop. For example, an F-22 can pull 10g, starts hitting CLmax at
probably in the general vicinity of 200mph (that’s a wild guess
on my part), and would probably not want to start a loop any
faster than 750mph (the speed of sound). Because it’s going
fast enough to pull about 10g the whole way around, and
because it loses less than 20% of its speed as it goes around,
the loop is pretty dang circular. (Recall that the axes are in
meters. This is a mile-high loop!) -500 0 500 1000 1500

-500
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And what happens when the speed or G capability is too low? Gradually decrease the max speed and/or the

allowable G limit, and you observe the following change:

If it has a little over the bare minimum speed and G
capabilities, it makes a very narrow loop, almost like a
backflip. (This assumes that it has elevator authority
even at extremely slow speed, which is true for most
single-engine propeller airplanes and for thrust-vectoring
jet fighters, but not for airliners, business jets, etc.)

If it has the bare minimum speed and G capabilities, then
its speed drops to zero just past 90° nose-up, and it falls
on its back and performs a back-flip, which is basically a
tail-slide. We can argue about whether this really
“counts” as a “real” loop, but it makes for a neat dividing
line: If an airplane has more than this combination of G
capability and max-speed/stall-speed ratio, then it can
do a loop.

If it has less than the bare minimum combination of G
capability and max-speed/stall-speed ratio, then before
it reaches the vertical, it approaches its stall speed and
needs to stop pulling up. Either the nose comes down, or
the airplane stalls. One way or another, the airplane can
no longer follow the teardrop-shaped path that this
analysis lays for it.

350
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This numerical analysis was performed with many different combinations of max speed at the bottom, stall speed,

and G capability. This yielded the following results:

Limit Load (Max G)

LOOP IMPOSSIBLE

Ratio of Max Speed (e.g. VNE) to flaps-up stall speed (VS1) 14

MAX-G
LOOP
POSSIBLE

LOOP POSSIBLE

e



In the graph on the previous page, the orange line shows combinations of G loads and speed ratios that would
make an airplane “barely” able to do a loop. Airplanes with these G and speed capabilities will run out of airspeed
when they reach 90 degrees nose-up. From there, they can simply fall backwards and perform a backflip on their
way down. Again; While this is more of a tail-slide than a true loop, it is the bare minimum that could be
considered a “loop”. Any small additional capability in speed or Gs would results in a true loop where the pilot’s
butt is pushed down against the seat the whole time.

The green region shows combinations of G and speed capabilities that would allow an airplane to do a loop.

The blue region shows combinations of G and speed capabilities that would allow an airplane to do a loop while
pulling limit load all the way around, i.e. without the speed ever dropping below VA.

The red region shows combinations of G and speed capabilities that would make it impossible for an airplane to do
a loop, because it would stall before getting to 90 degrees nose-up.

So now we can answer the question:
Which airplanes can perform a loop? What are the bare minimum capabilities required?

The required capabilities are, very roughly and conservatively;
- Ability to pull about 2g (structurally), and

- Ability to safely fly at about twice the flaps-up 1g stall speed.
Or:

- Willingness to pull 1.5g, and

- Ability to safely fly at three times the flaps-up 1g stall speed.

The g requirement is easy. Even the wimpiest airplane structures are certified to ~2.2g. Airliner structure is
certified to 2.5g limit load, and most single-engine airplanes can do 3 or 4g. Aerobatic airplanes can do at least 6g.

But the “2x / 3x their stall speed” requirement is surprisingly tricky. Most single-engine airplanes do meet it, but
not by much: Their VNE speed is often around three times their flaps-up stall speed, VS1. And that VNE is often
only achievable in a dive: In level flight at max power, they are typically capable of 2 to 2.5 times their stall speed.

Van's RV-6 | Cirrus SR22 | Beech A36 Bonanza | Piper J-3 Cub | Cessna 172 | Lancair 4P | SportCruiser LSA | Learlet 23
VS1 65 70 68 38 57 69 32 104
VNE 185 201 205 121 182 274 138 561
Ratio 2.85 2.87 3.01 3.18 3.19 3.97 4.31 5.39

So could a single-engine airplane such as a Cub, Cessna, or LSA perform a loop? Definitely: Accelerate (dive if
necessary) until flying at about 2.5 times the stall speed, then pull ~3g. Once the speed drops below V3 times the
1g stall speed, then pull a little less. The safest thing to do is as follows: Once the airplane has passed the vertical
(90° nose-up), the pilot should pull just enough to keep their butt in the seat, i.e. just over zero g, thus preventing
a stall by not requiring the wings to generate almost any lift. This is a similar rationale to the aileron roll. The
airplane is almost in a ballistic parabola from 90° nose-up... until 90° nose-down, at which point the pilot most
again pull about 3g and bring the nose back up to the horizon before the airplane picks up too much speed. (Some
pilots will cut the engine power to idle at the top of the loop in order to reduce the risk of over-speeding on the
way down).

Interestingly, excluding airshow aerobatic airplanes and jet fighters, it is business jets that offer the greatest
margins when it comes to performing loops. Their combination of high max speeds (very close to those of
jetliners) and slow landing speeds (to allow operations from small airports) means that they should be able to
easily reach the top of a loop with plenty of speed left over to avoid a stall. (If you know of a Gulfstream 6 that |
could borrow to verify this, please let me know).
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Aerobatic Capabilities of “Marginally Aerobatic” Airplanes - Bernardo Malfitano, Boeing Commercial Airplanes

Could an airliner do a loop? Looking at the A320 flight
envelope to the left, a loop seems doable: The max
speed is more than twice the stall speed (at most
altitudes), and the airplane can pull 2.5g, right?

250 300 350 400 450 500 550

However, there are two problems.

One problem is that it is difficult to get flaps-up stall
speeds for airliners. Most stall data, such as what is
shown to the left, is for flaps-down performance.
(And it would be impractical to expect a pilot to
deploy the flaps on the way up a loop, and retract
them again on the way down). In addition, most
published numbers for airliner slow-speed flight, such
as approach speeds, have an unclear amount of
margin or “padding” between these recommended
minimum speeds and the speeds at which the
airplane will actually not be able to sustain 1g flight.

The second problem is that an airplane that enters a loop at over 500mph but will only pull up at less than 2.5g
will end up doing a very tall loop, about 2 miles i.e. up 10,000 feet or so. This means that the stall speed at the top
will be higher: At altitude, fewer Gs can be pulled at the airplane’s speed at any given time before it stalls.
Unfortunately, when determining the ratio between maximum speed and minimum speed, what counts is the
maximum speed at the bottom of the loop (which will be relatively low, i.e. less energy to work with) and the stall
speed at the top of the loop (which will be relatively high, i.e. less G capability and a wider loop), making for a less
favorable ratio.

The good news is that airliner numbers like these nearly always (conservatively) correspond with performance at
max gross weight. When flown nearly empty, an airliner’s weight is reduced by almost half, which allows the stall
speed to be reduced by nearly a third. So even if a full airliner cannot quite perform a loop, an empty airliner
should be able to.

Let us perform our numerical analysis one more time, and “sharpen our pencil” even further: We will vary the stall
speed as a function of altitude. The higher the airplane flies, the thinner the air will be, so the higher the stall
speed will be, and the fewer Gs can be pulled (at a given speed) before a stall. The stall speed will rise as the
square root of the drop in density (e.g. if density drops to % of sea-level density, the stall speed goes up by two, in
order to provide the same dynamic pressure %pv?). The drop in density will be given by NASA’s standard
atmospheric model, https://www.grc.nasa.gov/www/k-12/airplane/atmos.html

Conservatively, we will say that the max speed is 550 mph (~478 knots), which is lower than the true max speed
until about 30,000 feet. Conservatively, will only allow the airplane to pull 2.2g, even though it could pull just over
2.5g when full and probably over 4g if nearly empty. And conservatively, we will estimate the sea-level flaps-up
stall speed at 220mph, based on the stall speeds of airplanes with similar airfoils, adjusted by differences in the
flaps-up wing loading (weight divided by wing area), then multiplied by about 1.2 to be safe (i.e. just add 20% and
call it an airliner with an extra fast stall speed. Even the Concorde landed at 185mph with no flaps or slats,
although one wonders whether a conventional airliner could match the Concorde’s high-alpha capabilities). This is
a lot of hand-waving, but it is conservative, i.e. estimating the worst case for each step. If our crudely-modeled
airliner (which can only go 550mph, can only pull 2.2g, and stalls at a very high speed of 220mph) can do a loop,
then a real airliner certainly can.
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B11-B10+1 =l
C11=E11+%$D$6

D11-D10+010

E11=£10+P10

F11=: (1/$H$3)“SQRT((($H$3"$D$5)A2) 2*$HE5%E11)

G11=TF(F11>511,%$D%$3, (F11,/R11)A2
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K11=T11*SIN((SC11+0. 5%$D$6) “$H$4)

A B c D E F G H L LT1=(1/9H$3) *5QRT (((3H32% $D$5)A2) -2% SH$ 5~ (E11+K11))

1 M11=((SH$3I*AVERAGE (F11,L11))42) /($HS5* (GL1-COS((C11+0.5%$DSE) *SHE4)))

2 Input parameters Constants and Ct g%%ﬁ;’f}égg{?%?{fasgf‘;égé) $H$4)

3 Limit Load (G) 2.2 m/s in an mph 0.44704 P11=N11#SIN(($C11+0. 5%$D56) = | L . . . . .
4 Stall speed at sea level 220 S ,n.adeg,ee 0.017453293 gﬂ ggﬁﬁs‘gé_lc_zglg/guggggsgégggélggggﬁ)/%sﬁ)m59 7)/518.6)A5.256)/(1718%((59-0. 00356% (E11+$H$7*$H$6) /$HE6)+459.7))
5 Speed at bottom (e.g. VNE) 550 one G in m/s* 9.81 S11-R11%*SQRT(SD$3) =
6 Increment size (degrees) 0.5 meters in one foot 0.3048 il v
7 starting altitude (ft) 0

8

Sone Start angle Xatstart | Hatstart | Start speed Gs Local Radius Segment. Horizontal Vertical 1st iteration 2nd iterali.on 2nd iteration i 2nd iteration Z.nd iteration Density Stall Maneuver

9 (degrees) (m) (m) (mph) (m) Length (m) | Component (m) | Component (m) | Vatend (m/s) | Local Radius | Segment Length | Horizontal Component | Vertical Component Speed Speed
10 0 0 0 0 550 2.2 5135.283795 | 44.8137 | 44.81323633 | 0.195535872 | 549.982548| 5135.1208 | 44.81224095 44.81181437 0.195529667 0.0023769 | 220 | 326.3127
11 1 0.5 44.8118[0.19553 | 549.98255 2.2 5134.469142 | 44.8066 | 44.80271508 | 0.586499668 | 549.930199| 5134.1433 | 44.80371063 44.79987218 0.586462452 0.0023769 220 326.3158
12 2 1 89.6117 [0.78199| 549.9302 2.2 5132.514694 | 44.7895 | 44.77883935 | 0.977077751 | 549.842979| 5132.1892 | 44.78665739 44.77599938 0.977015782 0.0023768 | 220.01| 326.325
13 3 1.5 134.388 | 1.75901 | 549.84298 2.2 5129.585031 | 44.7639 | 44.74305368 | 1.367023928 | 549.720927| 5129.26 44.76109548 44.74021849 1.366937306 0.0023765 | 220.02 | 326.3402
14 4 2 179.128 | 3.12595 | 549.72094 2.2 5125.682602 | 44.7299 | 44.69539186 | 1.756086729 | 549.564101| 5125.3582 | 44.72704626 44.69256333 1.755975596 0.0023762 | 220.03 | 326.3616
15 5 2.5 223.82 |4.88192| 549.56411 2.2 5120.810668 | 44.6874 | 44.6358989 | 2.144015972 549.37257| 5120.4871 | 44.68453818 44.63307887 2.143880516 0.0023758 | 220.05 | 326.3891
16 6 3 268.454 | 7.0258 | 549.37258 2.2 5114.973294 | 44.6364 | 44.56463086 | 2.530563129 | 549.146422| 5114.6508 | 44.63360671 44.56182116 2.530403583 0.0023753 | 220.07 | 326.4226
17 7 3.5 313.015| 9.5562 | 549.14644 2.2 5108.175342 | 44.5771 | 44.48165481 | 2.915481688 548.88576| 5107.8541 | 44.57429424 44.47885725 2.915298326 0.0023748 | 220.1 | 326.4622
18 8 4 357.494 [12.4715| 548.88578 2.2 5100.422461 | 44.5094 | 44.38704864 | 3.298527499 | 548.590702| 5100.1026 | 44.50665007 44.38426502 3.29832064 0.0023741 | 220.13 | 326.5078
19 9 4.5 401.878 | 15.7698 | 548.59072 2.2 5091.72108 | 44.4335 | 44.28090096 | 3.679459128 | 548.261382| 5091.4028 | 44.43073028 44.27813305 3.679229133 0.0023733 | 220.17 | 326.5594
20 10 5 446.157 [ 19.4491| 548.2614 2.2 5082.078394 | 44.3494 | 44.16331091 | 4.058038198 | 547.897949| 5081.7619 | 44.34659763 44.16056044 4.057785465 0.0023725 | 220.21| 326.617
21 11 5.5 490.317 | 23.5068 | 547.89797 2.2 5071.502352 | 44.2571 | 44.03438797 | 4.434029715 | 547.500568| 5071.1878 | 44.25432146 44.03165665 4.433754686 0.0023716 | 220.25 | 326.6806
22 12 6 534.349 | 27.9406 | 547.50059 2.2 5060.001643 | 44.1567 | 43.89425178 4.8072024 547.069416| 5059.6892 | 44.15397759 43.89154128 4.806905553 0.0023706 | 220.29| 326.75
23 13 6.5 578.24 |32.7475| 547.06944 2.2 5047.585681 | 44.0484 | 43.74303187 | 5.177329002 | 546.604687| 5047.2755 | 44.04564813 43.74034383 5.177010851 0.0023695 | 220.35 | 326.8254
24 14 7 621.981 | 37.9245| 546.60472 2.2 5034.264591 | 43.9321 | 43.58086746 | 5.544186598 | 546.106591| 5033.9569 | 43.9294214 43.57820346 5.543847695 0.0023683 | 220.4 | 326.9065
25 15 7.5 665.559 [ 43.4684 | 546.10662 2.2 5020.049185 | 43.8081 | 43.40790717 | 5.907556894 | 545.575348| 5019.7441 | 43.80539172 43.40526878 5.907197825 0.002367 |220.46 | 326.9934
26 16 8 708.964 | 49.3756 | 545.57538 2.2 5004.95095 | 43.6763 | 43.22430879 | 6.267226505 | 545.011195| 5004.6486 | 43.67365932 43.22169751 6.266847887 0.0023657 | 220.52 | 327.0861
27 17 8.5 752.186 | 55.6424 | 545.01123 2.2 4988.982026 | 43.5369 | 43.03023894 | 6.622987223 | 544.414383| 4988.6826 | 43.53433007 43.02765623 6.622589706 0.0023643 | 220.59 | 327.1845
28 18 9 795.214 | 62.265 | 544.41442 2.2 4972.155184 | 43.3901 | 42.82587278 | 6.974636279 | 543.785175| 4971.8588 | 43.3875154 42.82332006 6.974220541 0.0023628 | 220.66 | 327.2884
29 19 9.5 838.037 [ 69.2392 | 543.78521 2.2 4954.483807 | 43.2359 | 42.61139374 | 7.321976586 | 543.123847| 4954.1906 | 43.23333205 42.60887236 7.321543332 0.0023612 | 220.73 | 327.398
30 20 10 880.646 | 76.5608 | 543.12389 2.2 4935.981864 | 43.0744 | 42.38699312 | 7.66481697 542.43069| 4935.692 | 43.07190189 42.38450438 7.664366932 0.0023595 | 220.81 | 327.5131
31 21 10.5 923.03 | 84.2251| 542.43073 2.2 4916.663891 | 42.9059 | 42.1528698 | 8.002972387 | 541.706005| 4916.3776 | 42.90335171 42.15041496 8.00250632 0.0023578 | 220.89 | 327.6336
32 22 11 965.181 | 92.2276 | 541.70605 2.2 4896.544964 | 42.7303 | 41.90922986 | 8.336264126 | 540.950107| 4896.2622 | 42.72781305 41.90681011 8.335782808 0.002356 |220.98| 327.7595
33 23 11.5 1007.09 | 100.563 | 540.95015 2.2 4875.640677 | 42.5479 | 41.65628624 8.66452 540.163324| 4875.3617 | 42.54542193 41.65390272 8.664024226 0.0023541 | 221.06 | 327.8907
34 24 12 1048.74|109.227 | 540.16337 2.2 4853.967114 | 42.3587 | 41.39425838 | 8.987574511 | 539.345992| 4853.692 | 42.35631867 41.39191216 8.987065097 0.0023521 | 221.16 | 328.0272
35 25 12.5 1090.13 | 118.215| 539.34604 2.2 4831.540825 | 42.163 41.1233718 | 9.305269017 | 538.498461| 4831.2697 | 42.16064764 41.1210639 9.304746793 0.0023501 | 221.25 | 328.1689
36 26 13 1131.25[127.519 538.49851 2.2 4808.378799 | 41.9609 | 40.84385777 | 9.617451868 | 537.621093| 4808.1117 | 41.95855705 40.84158915 9.616917678 0.002348 |221.35| 328.3156
37 27 13.5 1172.1 [137.136| 537.62114 2.2 4784.498438 | 41.7525 | 40.55595289 | 9.923978536 | 536.714257| 4784.2355 | 41.75019872 40.55372444 9.923433237 0.0023458 | 221.45 | 328.4674
38 28 14 1212.65| 147.06 | 536.71431 2.2 4759.917531 | 41.538 | 40.25989871 | 10.22471172 | 535.778334| 4759.6589 | 41.53572782 40.25771126 10.22415618 0.0023436 | 221.56 | 328.6241
39 29 14.5 1252.91|157.284| 535.77839 2.2 4734.654224 | 41.3175 | 39.95594134 | 10.51952146 | 534.813716| 4734.4 41.31530266 39.95379565 10.51895655 0.0023413 | 221.67 | 328.7857
40 30 15 1292.86 | 167.803 | 534.81377 2.2 4708.726995 | 41.0913 | 39.64433105 | 10.80828519 | 533.820804| 4708.4772 | 41.08908445 39.64222783 10.80771178 0.0023389 | 221.78 | 328.9521
41 31 15.5 1332.5 | 178.61 | 533.82086 2.2 4682.154627 | 40.8594 | 39.32532184 | 11.09088781 | 532.800005| 4681.9093 | 40.85723704 39.32326173 11.0903068 0.0023365 | 221.89| 329.1231
42 32 16 1371.83|189.701| 532.80006 2.2 4654.956177 | 40.622 | 38.99917112 | 11.36722177 | 531.751739| 4654.7155 | 40.61992668 38.9971547 11.36663403 0.002334 |222.01| 329.2988
43 33 16.5 1410.82 | 201.067 | 531.75179 2.2 4627.150954 | 40.3794 | 38.66613923 | 11.63718704 | 530.676431| 4626.9149 | 40.37732183 38.66416701 11.63659347 0.0023315 | 222.13 | 329.479
44 34 17 1449.49|212.704| 530.67649 2.2 4598.758485 | 40.1316 | 38.32648909 | 11.90069119 | 529.574516| 4598.5272 | 40.12959283 38.32456152 11.90009266 0.0023289 | 222.26 | 329.6636
45 35 17.5 1487.81|224.604| 529.57457 2.2 4569.798493 | 39.8789 | 37.98048579 | 12.15764935 | 528.446435| 4569.572 | 39.87691175 37.97860326 12.15704675 0.0023262 | 222.39| 329.8526
46 36 18 1525.79 | 236.761 | 528.44649 2.2 4540.290867 | 39.6214 | 37.62839622 | 12.40798424 | 527.292637| 4540.0692 | 39.61945211 37.62655905 12.40737843 0.0023235 | 222.52 | 330.0458
47 37 18.5 1563.42 | 249.168 | 527.29269 2.2 4510.255637 | 39.3593 | 37.27048867 | 12.65162611 | 526.113577| 4510.0388 | 39.35738864 37.26869712 12.65101796 0.0023207 | 222.65 | 330.2432
48 38 19 1600.69 | 261.819| 526.11363 2.2 4479.712944 | 39.0927 | 36.90703243 | 12.88851271 | 524.909717| 4479.5011 | 39.09089707 36.90528672 12.88790308 0.0023179 | 222.79 | 330.4446
49 39 19.5 1637.59 | 274.707 | 524.90977 2.2 4448.683018 | 38.822 | 36.53829746 | 13.11858925 | 523.681523| 4448.4761 | 38.82015387 36.53659773 13.11797899 0.002315 |222.92| 330.65
50 an 20 1674 131287 251 523 AR15R 22 4417 186149 | 3R 5471 3A 1RARG4 13 241R0835 G522 47294AR1 4416 9847 | 3R G4533ANA 3R 16290033 13 34119878 n0N23121 1223071 330 K592
As we can see, the airliner does go all the way around.

At the top of the loop, the airplane is flying at about

118mph (and the stall speed is 254), so the wings can ..

only pull about 0.2g (i.e. the airplane is almost on a

weightless ballistic parabola over the top of the loop).
The only problem here is that a speed of 550mph is

above an airliner’s max-thrust level-flight speed at sea .

level. To correct for this, we can either...
(A) ... enter a lower speed at the start of the maneuver (i.e. at the bottom of the loop), or...

(B) ... start the loop at about 15,000 to 20,000 feet where the airplane starts being able to reach 500mph in level
flight, or...

(C) ... require the airplane to start the maneuver by diving to pick up speed.

Trying option (A) reveals that, if we restrict ourselves to pulling 2.2g and stick with our estimated flaps-up sea-
level 1g stall speed of 220mph, then the airplane must start the loop while going at 415mph or more, in order to
make it all the way around the top. This is probably attainable at sea level by most airliners, based on the A320
envelope on the previous page, where the airplane can apparently reach a max Q (orange line) corresponding to
about 400kts (460mph) at sea level. It would depend how over-powered the airliner is.
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Trying option (B) shows that, starting at 17,000 feet (the altitude where the A320’s envelope seems capable of
reaching the fastest speeds), the airplane can barely perform a loop if starting at 550mph and sticking with our
2.2g, 220mph-stall restrictions.

Of course, pulling the full 2.5g, and/or lowering our guessed flaps-up sea-level 1g stall speed from 220 to a more
reasonable 180 or even 200, shows that a loop is perfectly possible, whether starting at sea level around 370mph
or starting at 17,000 feet at 550mph.

The ability of an airliner to perform a loop is therefore largely dependent on its low-altitude speed performance.
Can it dive to 550mph at just above sea level without coming apart? How fast can it go in level flight just above sea
level? At what altitude can it reach 550mph in level flight? And, just as importantly: What is its flaps-up stall
speed? The answer will be different for different airliners, some of which are more overpowered than others, and
some of which have higher wing loading than others.

One the one hand, we can conclude that airliners are generally capable of loops. This is especially true of airliners
flown at well below their max weight, which are capable of pulling 2.5g or more without damage, and would
certainly stall (flaps-up, at sea level, doing 1g) at well under 220mph.

On the other hand, flying an airliner through a loop requires pulling a very precise amount of Gs. While flying
faster than the maneuver speed (which changes with altitude), the pilot must pull nearly the limit load, just under
2.5g. Then, once flying slower than the maneuver speed (which would happen starting a few thousand feet into
the loop), the pilot must pull the square of the ratio between the current speed and the current stall speed, i.e.
maintain the angle of attack at just below the value that would cause the airplane to stall. This is nearly impossible
to do in practice, without very accurate live information about the g level and the angle of attack, as well as
(ideally) the maneuver speed (continuously adjusted for local air density).

If the pilot pulls slightly too many Gs, at low altitude the wings would be damaged, and at high altitudes the wings
would stall. If the pilot pulls slightly too few Gs, then the airplane would run out of airspeed just before reaching
90 degrees nose-up, and risks being put into a tail-slide (which could damage the control surfaces) or maybe even
an inverted spin (from which it may or may not be possible to recover).

It would arguably be easier —and less dangerous — to program this required level of G-pulling into the fly-by-wire
system as a special pitch law, rather than trying to fly it by hand...

Another way to ask the question: If exactly the max safe Gs are pulled and the airliner performs a loop, one way to
quantify the precision required (i.e. the margin) would be to ask: How much fewer Gs could still be pulled with the
airplane still performing a loop? 10% less Gs? Maybe 0.5g less?

Conservatively assuming a flaps-up sea-level 1g stall speed of 220mph, and using a max sea-level speed of
460mph, pulling 2.5g gives us a nice loop. The bare minimum number of Gs that could be pulled and still give us a
backflip is 15% less, i.e. pulling 2.125g at the start but still nailing the ~0.1g at the top of the loop. Looking at an
absolute (subtractive) rather than multiplicative error, we can only be off throughout the whole loop by 0.15g.

Can a human pilot fly an entire loop while pulling a number of G to within 0.15g? Probably not safely.

If the stall speed is a more reasonable 180mph, the required precision is a more doable range of £0.4g.

The more speed we have going in (e.g. 550mph rather than 460mph), the more Gs we can pull (e.g. 3g instead of
2.5), and the lower the stall speed (e.g. 180mph rather than 220mph), the less precise the loop can be, i.e. the

greater the range of g values that are enough to bring the airplane all the way around without falling off before
reaching the top, but not enough to stall or break the wings.
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Exercises for the reader

(A.k.a. I have not gotten around to doing this yet but it would be fun, meaningful, and educational. Hopefully soon).

1) The last topic covered in the previous page shows that, if the G capability of an airplane is 2.5 and the ratio
between max speed and stall speed is 460/220, a backflip is barely possible if the pilot pulls the highest Gs
allowable (from a structural point of view and a stall point of view, whichever is less), minus 0.15g. We then saw
that, if the G capability of an airplane is 2.5 and the ratio between max speed and stall speed is 460/180 (i.e. a
little better than 460/220), a backflip is barely possible if the pilot pulls the highest Gs allowable (from a structural
point of view and a stall point of view, whichever is less), minus 0.4g (which is easier to do than to within 0.15g).

In general, what is the relationship between the limit load, the speed ratio, and the precision required (to within
how many Gs / to withing what fraction of a g) to fly a loop? Rather than just “pass/fail” (the boundary shown by
the orange line in the loop capability graph), what airplanes can perform loops easily and forgivingly, and which
airplanes require robot precision? Here is one way to quantify this:

The orange line on the G/speed-ratio chart shows the combinations of G capability and max-speed/stall-speed
ratios where an airplane is barely able to perform a backflip, if flown perfectly, if the pilot pulls maximum Gs the
whole time. By that | mean: If the pilot pulls exactly the limit load while faster than the maneuver speed, and the
square of the ratio between the speed and the stall speed while slower than the maneuver speed, a backflip will
be barely possible.

For what combinations of G capability and speed ratio (i.e. imagine a line in the geen zone, parallel to the orange
line) is a backflip barely possible if the pilot pulls 0.1g less than the maximum Gs? (Where “maximum Gs” is limit
load when above maneuver speed, and the square of the ratio between the speed and the stall speed when below
maneuver speed).

For what combinations of G capability and speed ratio >

(i.e. imagine another line in the geen zone, parallel to the

previous one) is a backflip barely possible if the pilot pulls Backilip only

0.2g less than the maximum Gs? S possible if flown
= to within £ ...

For what combinations of G capability and speed ratio § 3g

(i.e. imagine yet another line in the geen zone, parallelto  +

the previous ones) is a backflip barely possible if the pilot  .E 19

pulls 1g less than the maximum Gs? - 0.2g

The graph could be filled with these “precision lines”, and }

would end up looking something like this: Ratio: VNE/VS1

All that is really required to create this graph is to take the original orange line and move it over. Moving it
upwards by 1g shows the combinations of speed ratio and g capability that allow an airplane to be flown through a
loop (or, barely, at least through a backflip) with “1g to spare”, i.e. while remaining 1g below limit load. Moving
the orange line to the right by 0.5 would show the combinations of speed ratio and g capability that allow an
airplane to be flown through a loop (or, barely, at least through a backflip) with “0.5 VS1 to spare”, i.e. while
remaining below the max safe speed by a margin of “half a stall-speed”.
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II ) On page 4, we list four ways to model a loop, each more accurate than the previous... but we never get to
number four. Throughout this paper, all the math assumes that drag and thrust are perfectly balanced out, so the
changes in speed are due only to vertical travel, i.e. to “going uphill” or “going downhill”.

How would we model the fact that, as the airplane gets slower on its way up, there is less drag, and more excess
thrust? What would the impact be to the loop?

IT A ) We can assume that the airplane is in steady level flight at the beginning of the loop, i.e. that thrust and
drag are equal and opposite, that a dive was not necessary to pick up enough speed for a loop. (This includes the
increase in induced drag that happens when the airplane starts pulling so-many Gs to get into the loop).

In this scenario, as soon as the airplane starts going uphill and losing speed, it will have “excess thrust” (i.e. some
thrust in addition to what is needed to overcome drag). That will be the case even more so once the airplane is
below maneuver speed and starts pulling fewer Gs.

Over the time of each analysis segment (10 degrees or 2 degrees or whatever), how much speed will this thrust
add? That depends on the airplane’s power curve, which can be looked up for many airplanes. Below is one for the
RV-10 and one for the A340.

Pénaud Diagras (Thrust) at h={ (Service Ceiling)
450 700 T T T

B0

Vbg=91 KIAS

E | 1 ke L 1
s 6 85 70 75 80 & % 95 100 105 110 115 120 125 130 135 190 : 100 150 200 20 30
TAS [m's]

Airspeed (KIAS)

Sources: http://www.azcloudflyer.com/flight_test.html and http://www.davidegenovese.com/Progetti_files/Elaborato%20A340 300%20-%20J1.pdf

Subtract the value of the curve at each speed (and don’t forget to modify the values to take into account the extra
induced drag from the Gs being pulled) from the available thrust, and that gives the excess thrust. Divide it by the
airplane’s weight, and you get the acceleration that it provides, i.e. how much additional speed per second
(because F=ma) you get from the engines. Multiply this “additional speed per second” by the duration of the
segment to get the extra speed in that segment. Add this “additional speed from having a little excess thrust for a
short period of time” to the “speed at the end of this segment” at each segment of the analysis, and...

... You will find that the airplane is faster all the way around the loop than it was when we were neglecting the
excess thrust. And this should be no surprise!

This means the airplane will end the loop higher, and faster, than it started, because of all the extra energy that it
picked up on the way around the loop.

II B ) This all changes, of course, if a dive was necessary before the start of the loop to pick up speed. This means
that at the start of the loop, the airplane has excess drag, rather than excess thrust, and will slow down more
quickly than it did when we were neglecting all this. Once the airplane slows past its terminal velocity (terminal
velocity while pulling this-many Gs at this engine setting) and has some excess thrust... will this give the airplane
enough energy, for the little while when it has some excess thrust, to finish the loop at the same speed and
altitude as when it started? That will depend on how underpowered/overpowered the airplane is.
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III ) What about aerobatics that are made of pieces of loops and rolls, such as Immelmans, Split-Ss, and Cuban
8s? Can a given airplane perform those? How much more speed and G capability does an airplane need (if any) in
addition to what is needed to perform a loop?

A Cuban 8 requires the airplane to roll 180 degrees while it’s
about % of the way down from a loop. This means that it
needs enough speed not only to barely make it over the loop,
but enough speed to be only 45 degrees down from the top
of the loop (at which point it has not picked up a whole lot of
speed since the top of the loop) and then roll halfway around
without taking too long. If it takes too long, it will go downbhill
for too long, pick up too much speed, and over-speed at the
bottom. The faster the roll rate (which, of course, is a function
of speed...), the less downwards the airplane has to point
before it rolls back upright. An airplane with a very slow roll
rate might only be able to safely accomplish a Cuban 8 if it
starts the loop at well below max speed, so that it can end the
Cuban 8 lower than the start of the first loop without over-
speeding. This means it needs enough speed capability to CUBAN 8
start a loop at less than its max safe speed and still have

enough speed to make it over the top... So either you need

powerful ailerons, or a high VNE/VS1 ratio.

An Immelman is the same as the first half of the loop, with the 9’%
additional requirement that the speed at the top must be enough for ¢W L \
1g level flight (and the aileron capability must be enough to roll the

airplane around once it’s getting up to the top at this speed). In short,
this requires either more G capability than a loop does, or a higher ' +
VNE/VS1 ratio. Everything else being equal, if an airplane (with a given !
VNE/VS1 ratio) needs to pull so many Gs in order to barely make it

around a loop, then it needs one more G in order to perform an .

Immelman. (The difference between the speed-&-G requirement for a —_— e

loop and the speed-&-G requirement for an ilmmelman is similar to W
the difference between the speed-&-G requirement for a rigid circular IMMELMAN
loop and the speed-&-G requirement for a non-rigid circular loop).

A Split-S is the same as an Immelman, but backwards. The airplane must
be flying close to stall speed, then roll inverted, then pull up into the
second half of a loop. Given the VS1/VNE ratio, how many Gs must it pull /ﬂ‘s—-:.——:a' —a=l ==

in order to not over-speed? About one more G than is required for a

loop. The added complication, as with the Immelman, is to have enough

aileron authority at the slow end near the top to roll around. When flying f e
slowly and trying to roll as much as possible, it is easy to enter asnap roll ¥ ({ Laop
(i.e. to stall one wing, causing the non-stalled wing to roll the airplanein \4

the direction opposite of what was commanded) by mistake! For both \ -

the Split-S and the Immelman, the maneuver is made easier by having a \

slightly diagonal segment at the top, i.e. by starting the Split-S with a

slight climb (similar to how one starts an aileron roll) or completing the

Immelman with a slight descent while/after rolling (until the airplane has End
enough speed for 1g flight). SPLIT “S”
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IV ) Can a given airplane sustain inverted (-1g) flight? How about knife-edge flight?

While all previous topics on this paper have primarily depended on kinetic energy being temporarily exchanged for
gravitational potential energy, the question of whether an airplane can sustain -1g inverted flight and/or sideways
knife-edge flight is fundamentally a stability-and-control question, related to the stabilizing effect (i.e. size and
position) of the tail fins, and to the capability (i.e. force) that the control surfaces can exert. At the high angles of
attack required for inverted and especially knife-edge flight, the tail fins will try to lift the tail up in the air and
cause the nose to point below the horizon. The control surfaces will “fight” this force and try to keep the nose high
above the horizon. Who will win?

If the tail fins do not have a very large stabilizing effect (i.e. if the center of gravity is close to the center of lift,
requiring small forces from the tail fins), and if the control surfaces are relatively large, then the airplane should be
able to sustain inverted and knife-edge flight, assuming the structure and engines and systems are up for it.

(Most airliners are certified to -1g, at least so that they can survive the occasional turbulence that is rough enough
to send stuff flying towards the ceiling. However, most piston-powered airplanes have fuel pumps and oil pumps
that will stop working if the airplane is inverted for more than a second or two. But let’s disregard this for now and
assume that the structure, the fuel systems and engine, and other components can take -1g flight. So the question
becomes, aerodynamically, can the airplane sustain -1g?)

As with loops and rolls, speed helps: The faster an airplane flies, the less negative the angle of incidence of the
horizontal stabilizer has to be, and the more force is generated by the elevators at any given angle of deflection.
But, given realistic flying speeds for a Cessna or a 747: Are their horizontal stabilizers small enough, and their
elevators big enough, to sustain inverted flight?

Why is that (previous sentence) the best way to phrase the question? Below is an introduction to the physics of
stability and balance in an airplane, which are what determines whether an airplane can sustain inverted flight.
(Knife-edge flight, as you will see, is a slight twist on this).

Nearly all airplanes fly with the center of gravity ahead of the center of lift, and the horizontal stabilizer at a
slightly negative angle of attack. This means that the weight is closer to the front than to the back, making the
nose want to come down, but the horizontal tail fins “push down” and the airplane is balanced around the wings
like a see-saw.

WING
LIFT

o

TAIL
“LIFT”

WEIGHT

For reasons discussed in my course, this arrangement ensures pitch stability, i.e. the angle of attack tries to remain
at the trimmed value. Increase the angle of attack, e.g. by pulling the nose up and then releasing the controls, and
the nose will naturally want to come back down.
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Aerobatic Capabilities of “Marginally Aerobatic” Airplanes - Bernardo Malfitano, Boeing Commercial Airplanes

TAIL
LIFT

What happens if we turn the
airplane upside down without
changing anything?

Both the weight and the wing
lift will pull the airplane down!
It will fall like a rock... or,

actually, faster than a rock! WING WEIGHT
LIFT

But what if we bring the nose up so that the wing is flying at a positive angle of attack, generating about as much
lift as it was before? That will at least keep the airplane from falling right away. (In the image below, the airplane is
flying to the right, not upwards. The fuselage is at a high angle of attack, but the wing is at the same moderate
angle of attack as the first of these drawings, in the previous page).

WING
We're almost there. The only problem is that LIFT
the center of gravity is ahead of the center of
lift, so this airplane will see-saw about the
wings: The tail will rise and the nose will drop,
putting the airplane into an inverted dive.

To solve this problem, we need down-force
from the tail, just like we had during level flight
(in the previous page). But the tail is set at an
angle relative to the wings, pointing “down”
(towards the airplane’s belly, i.e. in the absolute
“up” direction when the airplane is inverted).

WEIGHT

DIRECTION OF FLIGHT

WING

LFT The solution: Deflect the elevators

upwards as much as possible. Can the
elevators be deflected up enough so that
the combined “horizontal stabilizer plus
elevator” airfoil is at an overall negative
angle of attack? In other words, is the tail
movable enough so that we can transition
it from “deflecting air downwards” to
“deflecting air upwards”?

In this final drawing, the elevators can be
deflected up enough so that the combined
TAIL WEIGHT “horizontal stabilizer plus elevator” airfoil
“UFT” is at an overall negative angle of attack.
Therefore, the airplane is aerodynamically
capable of sustaining -1g inverted flight.

DIRECTION OF FLIGHT
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However, as you can see below, this would not be the case if the elevators are small and/or if the horizontal
stabilizer is set at a very negative angle relative to the fuselage during normal flight.

.
»
.
.
]
»
.
. »
. »
DIRECTION OF FLIGHT
Probably capable of sustained inverted -1g flight Probably not capable of sustained inverted -1g flight

In theory, both of these characteristics (small elevator, negatively angled horizontal fins) seem appropriate for
slow, stable airplanes such as single-engine trainers and jet airliners. In practice, however, even jetliners and
Cessnas do have enough elevator authority for -1g flight. | will leave it as an exercise to the reader to set up the
math. What fraction of the horizontal stabilizer must be made up of a movable elevator, and what deflection angle
is necessary for that elevator, to sustain inverted flight in an airplane where the CG is a certain distance ahead of
the wings center of lift?

Another way to think about it: Imagine flying an airplane in normal horizontal flight, then pushing the yoke or
joystick forward very hard, pushing the airplane into a dive, causing all loose objects (and occupants) inside to “fall
up” to the ceiling. Some level of negative Gs were just pulled, less than zero. If the controls are pushed forwards
all the way, how negative can those Gs get, in that airplane? It will help if the tail is trimmed all the way nose-
down (which in jetliners means that the horizontal stabilizer itself is rotated upwards, or at least less-downwards)
and if the speed is higher.

In the end, a given elevator deflection (including pitch trim of the elevators or of the horizontal stabilizers) gives a
certain angle of attack. At slower speeds, you want a higher angle of attack in order to sustain 1g flight, so you
either pull up on the controls all the time, or you use trim to deflect the entire horizontal stabilizer downwards (or
to set the zero position of the elevator at a more upwards deflection angle). At faster speeds, you want a lower
angle of attack in order to sustain 1g flight, so you either push down on the controls all the time, or you use trim
to deflect the entire horizontal stabilizer upwards or less downwards (or to set the zero position of the elevator at
a more downwards deflection angle). So pushing the controls all the way nose-down simply commands the
minimum (most negative) angle of attack that the airplane can sustain. The faster you’re going, the more negative
Gs this angle of attack will supply. Go fast enough, and if you push down, you get -1g and you fly horizontally while
inverted. Again, airliners and trainers are actually capable of this. One way to show this is to fly at about 70% of
the max thrust speed (so that the airplane experiences about 50% of the dynamic pressure that it would see at
max speed) and perform a -0.5g push-over. If the airplane can do -0.5g without stalling at 70% max speed, then it
could sustain -1g flight at max speed.
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This, of course, neglects the fact that the airplane is draggier while inverted. That is primarily because the wing is
optimized for right-side-up , so it will generate more drag while inverted if generating the same lift force. It is also
because the elevator will be deflected up like an air brake... unless the entire horizontal stabilizer is deflected
down very much, either by a large amount of trim capability (which is rare because airplanes never need to sustain
such low angles of attack “hands off”) or by an all-moving stabilator (which is common in jet fighters and other
supersonic airplanes but is relatively rare among slower airplanes, with exceptions like the Beech Musketeer and

the RV-12).
FUSELAGE
LIFT

Similar reasoning can be used to
address the question of whether an
airplane can sustain knife-edge
flight, i.e. “flying on its side” so that
the fuselage generates lift, rather

l than the wings.
WEIGHT The airplane will be at some angle

of sideslip (i.e. sideways angle of
attack). This means that the
vertical stabilizer (a.k.a. the
“vertical fin”), which is normally

RUDDER aligned with the airflow and
“LIFT” DIRECTION OF FLIGHT generating no forces, will generate
upwards lift and try to lift the tail

higher into the air and cause the
nose to drop below the horizon. This can be prevented if the rudder is relatively large and can be deflected by a
large angle. How large? That depends on the size of the non-moving part of the vertical stabilizer, and on how far
the center of gravity is forwards of the center of lift of the fuselage. The center of lift of the fuselage may be ahead
of the center of gravity (if, like a wing, it is about % of the way back from the front end) or it may be behind the
center of gravity (since, as a long bluff body, it deflects air roughly similarly at all points along its length, so the
center of lift might be about halfway down the fuselage, behind the center of gravity). If the center of lift is ahead
of the center of gravity, then the vertical fin’s lift will actually help balance the airplane, unless the tail makes too
much or too little lift. The question, then — based on the shape of the fuselage — is whether the rudder is big
enough, and has enough of an angle of travel, to generate whatever upwards or downwards lift is necessary to
balance the airplane, i.e. to line up the total lift (from the fuselage, vertical fin, and rudder) with the center of
gravity. The answer, in nearly all airplanes, is “No”.

VERTICAL
FIN
LIFT

| will spare you the details, but while most airplanes (including airliners) are barely capable of sustained inverted -
1g flight, they are not capable of knife-edge flight. Very high speeds are required to get sufficient lift out of the
fuselage for keeping the airplane in the air, and to get sufficient force out of the rudder for it to hold the desired
angle rather than being overpowered by the unbalanced lift distribution around the fuselage and vertical fin.
Additionally, the enormous induced drag during knife-edge flight (because the fuselage is a very, very inefficient
wing, with a very low aspect ratio and poor airfoil curvature) makes it impossible to sustain such high speeds
except in extremely overpowered airplanes such as fighter jets and airshow aerobatic airplanes. Other airplanes
would have to dive to well below their maximum safe speeds in order to have enough airflow to fly knife-edge.
Before too many seconds, that dangerous extra speed would bleed off and the nose would start dropping. Again,
modeling the specifics and getting some numbers is left as an exercise to the reader.
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